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Abstract 

In-situ tensile testing in the scanning electron microscope was 
used to investigate the quasi-static deformation behavior and 
fracture mechanism of WE43 magnesium alloys.  The in-situ 
tensile experiments were conducted at room temperature at a 
constant crosshead speed of 0.5 mm / min.  One set of samples 
was a rolled and quenched F temper alloy and the other set was an 
artificially aged T5 temper alloy.  The objective of this research 
was to determine the effect of tempering on precipitates 
chemistries, microstructure, and mechanical properties.  The 
sample orientation is known to affect the tensile properties.  
Hence tensile specimens with different sample orientation were 
tested.   The crystallographic orientations were characterized by 
electron backscattered diffraction.  Strong textures were observed 
with rolling plane crystals indicating a basal plane orientation.   

Introduction 

Magnesium Elektron’s Elektron™ WE43, developed 
initially as a sand casting alloy, was found to have good 
mechanical properties, creep and corrosion resistance, and good 
strength retention after exposure to elevated temperatures1.  
Elektron™ WE43 has the nominal wt% composition of Mg-(3.7 – 
4.3)Y- (2.0-2.5)Nd-(0.4-2.4) Heavy Rare Earth elements-(0.4)Zr.  
Because of its castability, and creep and corrosion resistances, it is 
well known that there is interest by the aerospace and automotive 
industries.   Due to Mg’s low density2, the Army is also interested 
in Mg alloys for numerous lightweight structural and engineered 
material applications.

There have been some recent research in the area of 
casting and process control of WE43, using computer simulations 
to determine the best casting parameters and optimizing the 
processsing3.  This paper explores further into the processing, but 
at the mesoscale for optimization of the microstructure.  The 
objective of this research is to understand the strengthening 
effects based on the homogenization and the T5 tempering 
process.  Homogenization, which is a heat treatment at a 
temperature ranging from 200 to 600 ºC for several hours, affects 
the precipitate formation.  Some precipitates have been observed 
to affect hardness4 and improve mechanical properties5, 6 by Y 
additions7 and by dispersion strengthening8. The objective is to 
characterize the precipitates chemistries, microstructure, and 
mechanical properties of the as-rolled WE43 ---F and homogenized 
and artificially aged WE43-T5 tempered alloys.  In this paper, 
current results identifying the effects of T5 heat treatments on the 
quasistatic tensile response of Elektron™ WE43 is discussed. 

Experimental Procedures 

Elektron™ WE43 -F and WE43 -T5 tensile specimens with a 
gauge length of 15 mm, width of 3 mm, and thickness of 1 mm 
(see Fig. 1) were milled in the longitudinal direction and 
transverse directions from rolled plates.  The samples were 
mechanically polished starting with 600 grit SiC disc coated with 
wax, then with glycol based diamond solution of incrementally 
decreasing particle size on polishing cloth until reaching the 0.25 
micron particle size.  Further polishing with 0.04 micron colloidal 
silica on final polishing cloth was performed for samples to be 
examined by the scanning electron microscope (SEM), energy 
dispersive spectroscopy (EDS), and electron backscattered 
diffraction (EBSD).   

The FEI Nova NanoSEM 600 SEM was used to 
characterize the microstructure before and after the tensile tests.  
EDS (EDAX Genesis) was used to determine the precipitate 
chemistry for both F and T5 samples.  EBSD characterization of 
the crystallographic orientation texturing of the F and T5 samples 
were conducted at 20 kV accelerating voltage, spot size of 5, and 
at 70º tilt with the EDAX/TSL EBSD system in the SEM.  EBSD 
patterns were collected from surfaces perpendicular to the rolling 
direction, normal direction, and the transverse direction for both 
WE43 samples.  The collected data was minimally “cleaned” with 
the TSL OIM Analysis 5 “cleanup” program to correct incorrectly 
indexed points based on neighboring point’s orientation 
correlation. 

Figure 1. Tensile specimen geometry 

 The Ernest Fullam in-situ tension and compression 
stage for the SEM (see Fig. 2) coupled with the ADMET’s 
MTEST Quattro™ interface and application program was used for 
the tension experiments.  Strain rates on the order of 10-4 s-1 were 
applied for all samples.  To determine a more accurate Young’s 
modulus, digital image correction (DIC) technique was applied. 
During the tensile test, in the elastic regime, a series of SEM 
images of the microstructure were captured and corresponding 
live loads and positions were recorded.  The image size was 1024 
× 943 pixels; the field of view was about 4 × 4 mm2.  Then, the 
TIFF images were imported into GOM mbH’s ARAMIS, a 
photogrammetric software, for strain analysis.  The analysis  
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Figure 2. Ernest Fullam in-situ tension-compression stage 

procedure for ARAMIS was detailed in earlier report9.  Here, we 
used the 2-dimensional analysis procedure, in which only one 
camera view was required.  The optimal facet size is 51 × 51 
pixels and the optimal facet step overlap is 25 pixels.  A signal 
filter was applied to remove noise (2 × 7 filter runs; replacing the 
facet point value with the median value among the 49 neighboring 
facet points and itself).  In addition to the local strain contour 
plots, three virtual digital strain gauges were placed on the 
specimen surface to obtain the average bulk strain.  The average 
bulk strain and load values were used to plot more accurate stress 
strain curves to calculate the Young’s modulus. 

Results 

When examined under the SEM, the microstructures of 
both the F and T5 tempers revealed obvious precipitation, as 
shown in Fig 3.  Precipitates are known to contribute to the 
strengthening of WE43 alloys4, 10.  The finer precipitates are most 
likely attributed to the metastable β”, β’, intermediate β1, and 
stable β phases4, 10, 11.  Analysis of those and other precipitates are 
currently being conducted with a transmission electron 
microscope for this research.  The larger rectangular precipitates 
and the oval shaped precipitates are believed to be Mg24Y5, and 
Mg41Nd5, respectively12, 13.  EDS analysis of these larger 
precipitates showed that the oval precipitates were Nd-rich and 
the rectangular precipitates were Y-rich (see Fig. 4 and 5).   

Figure 3. SEM image of the plate surface of (a) WE43 –F and (b) 
WE43 –T5. 

From the in-situ micro tensile experiments, load over 
elongation data were obtained and engineering stress – strain 
curves were plotted, as shown in figure 6.  DIC technique was 
used to collect data and plot the stress – strain curves in the elastic 
regime.  By comparison of the moduli calculated from the stress – 
strain curves from the ADMET data to those calculated from DIC 
data, it was determined that the DIC data was more accurate along  

Figure 4. (a) Secondary electron image of the mapped area of 
WE43 -F. (b) Blue points indicating the presence of Mg, (c) Nd in 

purple and (d) Y in yellow. 

Figure 5. (a) Secondary electron image of the mapped area of 
WE43 –T5. (b) Blue points indicating the presence of Mg, (c) Nd 

in purple and (d) Y in yellow. 

Figure 6.  Example stress – strain curves of the –F and –T5 
samples in the longitudinal and transverse directions. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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the elastic regime.  The average ultimate tensile stresses from the 
ADMET data, elongations, and moduli from the DIC data are 
tabulated in Table I.  Post mortem analyses of the fracture 
surfaces were conducted.   Though both F and T5 samples in both 
longitudinal and transverse directions failed by microvoid 
coalescence, the T5 sample showed the influence of less ductility 
(see Fig 7).  In addition, there is evidence of a more brittle rupture 
mechanism in play for the T5 samples. 
 

TABLE I.  UTS, Elongation, and Young’s Modulus for the F and 
T5 samples 
Sample UTS 

(MPa) 
% 

Elongation 
Young’s 

Modulus (GPa) 
WE43–F 
Longitudinal 

273.2 20.5 25.0 

WE43–F 
Transverse 

283.2 20.0 34.5 

WE43–T5 
Longitudinal 

331.7 10.5 25.8 

WE43–T5 
Transverse 

358.6 13.3 34.1 

 
 

 
 

 
Figure 7. Failure region of (a) an F sample and (b) T5 sample. 

 
 Texturing of the surfaces was observed for both –F and 
–T5 samples from the collected EBSD patterns.  The basal plane 
orientation was the most observed orientation in the surface 
parallel to the plate, while the plane orientations in the surfaces 
perpendicular to the rolling direction and transverse direction 

tended to be prismatic planes.  This is in agreement with 
observations reported by Senn and Agnew14.  Figure 8 shows a 
schematic of the orientations in the corresponding surfaces of the 
T5 plate. The schematic’s surfaces are made up of one set of 
EBSD inverse pole figure maps from EBSD patterns obtained 
from each of the plate surfaces. The F tempered samples also 
showed similar texturing of the surfaces in relation to the plate’s 
rolling and transverse directions.  To better compare the 
differences between the F and T5, or the effect of the 
homogenization and aging on the orientation distribution, inverse 
pole figures of the surface orientations were plotted in Fig. 9.  
 

 
Figure 8.  Schematic of the orientation texture of WE43-T5 in 

relation to the plate directions (not to scale). 
 

 

  

 

 
 

Figure 9.  Inverse pole figures with texture index of (a) sample F 
surface parallel to the plane of the plate, (b) sample T5 surface 

parallel to the plane of the plate, (c) sample F surface 
perpendicular to the long transverse direction, (d) sample T5 

surface perpendicular to the long transverse direction, (e) sample 
F surface perpendicular to the rolling direction, and (f) sample T5 

surface perpendicular to the rolling direction. 
 

Surface parallel to the plate had a higher amount of 
texturing than the surfaces perpendicular to the rolling and 
transverse directions. Although this is based on a limited dataset, 
Fig. 9 shows the homogenization and aging processes changes the 
orientation distribution, and decreases the texture. 

(a) 

(b) 

(a) (b) 

(e) (f) 

(d) (c) 
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Summary 

The microstructure and tensile properties of Elektron™ WE43 –F 
and –T5 samples were characterized by microscopy techniques 
and in-situ tensile tests.  Crystallographic orientation distribution 
results showed texturing of the surfaces, with the surface parallel 
to the plate surface having a basal plane orientation, and surfaces 
perpendicular to the rolling and transverse directions having a 
prismatic plane orientation.  The in-situ tensile experiment results 
indicated a decrease in ductility but increase in the strength of the 
T5 alloys in both directions. The fracture surfaces suggest a 
change in the failure mechanism after the homogenization and 
artificial aging in the T5 alloys.  More microstructural 
characterization and experiments are needed to determine the full 
effect of the homogenization and T5 tempering on the 
microstructure and the mechanics for future property 
optimization. 
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